Fast Feature Selection in a GPU Cluster Using the Delta Test
نویسندگان
چکیده
Feature or variable selection still remains an unsolved problem, due to the infeasible evaluation of all the solution space. Several algorithms based on heuristics have been proposed so far with successful results. However, these algorithms were not designed for considering very large datasets, making their execution impossible, due to the memory and time limitations. This paper presents an implementation of a genetic algorithm that has been parallelized using the classical island approach, but also considering graphic processing units to speed up the computation of the fitness function. Special attention has been paid to the population evaluation, as well as to the migration operator in the parallel genetic algorithm (GA), which is not usually considered too significant; although, as the experiments will show, it is crucial in order to obtain robust results.
منابع مشابه
Variable Selection in a GPU Cluster Using Delta Test
The work presented in this paper consists in an adaptation of a Genetic Algorithm (GA) to perform variable selection in an heterogeneous cluster where the nodes are themselves clusters of GPUs. Due to this heterogeneity, several mechanisms to perform a load balance will be discussed as well as the optimization of the fitness function to take advantage of the GPUs available. The algorithm will b...
متن کاملUltra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU
Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملAn Approach in Radiation Therapy Treatment Planning: A Fast, GPU-Based Monte Carlo Method
Introduction: An accurate and fast radiation dose calculation is essential for successful radiation radiotherapy. The aim of this study was to implement a new graphic processing unit (GPU) based radiation therapy treatment planning for accurate and fast dose calculation in radiotherapy centers. Materials and Methods: A program was written for parallel runnin...
متن کاملTabu Search with Delta Test for Time Series Prediction using OP-KNN
This paper presents a working combination of input selection strategy and a fast approximator for time series prediction. The input selection is performed using Tabu Search with the Delta Test. The approximation methodology is called Optimally-Pruned k -Nearest Neighbors (OP-KNN), which has been recently developed for fast and accurate regression and classification tasks. In this paper we demon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 16 شماره
صفحات -
تاریخ انتشار 2014